

Topic/Skill	Definition/Tips	Example
1. Types of Angles	Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°.	Acute Right Obtuse Reflex
2. Angle Notation	Can use one lower-case letters, eg. θ or x Can use three upper-case letters, eg. BAC	$A \leftarrow \theta$ C
3. Angles at a Point	Angles around a point add up to 360°.	$a+b+c+d=360^{\circ}$
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	$x = y$ $x + y = 180^{\circ}$
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x}{y}$
6. Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam.	<i>y x x y</i>
7. Corresponding Angles	Corresponding angles are equal. They look like F angles, but never say this in the exam.	y/x
8. Co-Interior Angles	Co-Interior angles add up to 180°. They look like C angles, but never say this in the exam.	<i>y</i> / <i>x x</i> / <i>y</i>

Mr A. Coleman Glyn School

0 4 1 1		A -
9. Angles in a	Angles in a triangle add up to 180° .	^
Triangle		800
		450
		B 45 550
10. Types of	Right Angle Triangles have a 90° angle in.	
Triangles	Isosceles Triangles have 2 equal sides and	
Triangles	2 equal base angles.	
	_	
	Equilateral Triangles have 3 equal sides	, v
	and 3 equal angles (60°).	Right Angled Isosceles
	Scalene Triangles have different sides and	Aught Aughed Isosceles
	different angles.	<u></u>
		60
	Base angles in an isosceles triangle are	
	equal.	60° 60°
	•	Equilateral Scalene
		Equilateral Scatene
11. Angles in a	Angles in a quadrilateral add up to 360°.	
Quadrilateral		75°
		126
		65° 93°
10 D I		
12. Polygon	A 2D shape with only straight edges .	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the	
	angles are equal.	
14 Name = - F	2 sided - Twienels	
14. Names of	3-sided = Triangle	
Polygons	4-sided = Quadrilateral	
	5-sided = Pentagon	Triangle Quadrilateral Pentagon Hexagon
	6 -sided = Hexagon	
	7 -sided = Heptagon /Septagon	
	8-sided = Octagon	1// 47 60 10
	9-sided = Nonagon	
	10-sided = Decagon	Heptagon Octagon Nonagon Decagon
15. Sum of	$\frac{(n-2)\times 180}{}$	Sum of Interior Angles in a Decagon =
Interior Angles	where n is the number of sides.	$(10-2) \times 180 = 1440^{\circ}$
microi Aligies	where it is the number of sides.	(10 - 2) \ 100 - 1440
16. Size of	$(n-2) \vee 100$	Size of Interior Angle in a Deculer
	$(n-2)\times 180$	Size of Interior Angle in a Regular
Interior Angle	\boldsymbol{n}	Pentagon =
		(F 0) - 400
in a Regular Polygon	You can also use the formula:	$\frac{(5-2) \times 180}{5} = 108^{\circ}$

Mr A. Coleman Glyn School

	180 – Size of Exterior Angle	
17. Size of	360	Size of Exterior Angle in a Regular
Exterior Angle	\overline{n}	Octagon =
in a Regular	-	360
Polygon	You can also use the formula:	$\frac{360}{8} = 45^{\circ}$
	180 – Size of Interior Angle	

Mr A. Coleman Glyn School