Topic: Area Under Graph and Gradient of Curve | Topic/Skill | Definition/Tips | Example | |--------------------------|---|--| | 1. Area Under
a Curve | To find the area under a curve, split it up into simpler shapes – such as rectangles, triangles and trapeziums – that approximate the area. | 50
40
40
40
30
10
0
1 2 3 4 5 6 7
Time (hours) | | 2. Tangent to a Curve | A straight line that touches a curve at exactly one point. | Tangent line | | 3. Gradient of a Curve | The gradient of a curve at a point is the same as the gradient of the tangent at that point. 1. Draw a tangent carefully at the point. 2. Make a right-angled triangle. 3. Use the measurements on the axes to calculate the rise and run (change in y and change in x) 4. Calculate the gradient. | Gradient = $\frac{Change in y}{Change in x}$ $= \frac{16}{2} = 8$ | Mr A. Coleman Glyn School | 4. Rate of | The rate of change at a particular instant in | 70 | |--------------|--|--------------------------| | Change | time is represented by the gradient of the | 60 | | 8- | tangent to the curve at that point. | 50
<u>E</u> 40 | | | the grant of the first | ф 30 | | | | 20 | | | | of change | | | | 0 2 4 6 8
Time (s) | | | | 70 | | | | Negative rate | | | | © 40 of change | | | | (E) 40 of change | | | | 20 | | | | 10 | | | | 0 2 4 6 8
Time (s) | | 5 D: 4 | 37 C 1.11 1.C 1 | | | 5. Distance- | You can find the speed from the gradient | Distance | | Time Graphs | of the line (Distance ÷ Time) | (Km) a | | | The steeper the line, the quicker the speed. | 2 | | | A horizontal line means the object is not | 1 | | | moving (stationary). | 0 0 1 2 3 4 5 5 7 8 9 10 | | C 77 1 | | Time (Hours) | | 6. Velocity- | You can find the acceleration from the | " | | Time Graphs | gradient of the line (Change in Velocity ÷ Time) | Velocity (m/s) | | | The steeper the line, the quicker the | | | | acceleration. | | | | A horizontal line represents no | Time (Seconds) | | | acceleration, meaning a constant velocity . | Time (Seconds) | | | | | | | The area under the graph is the distance . | | Mr A. Coleman Glyn School