| Topic/Skill | Definition/Tips | Example | |---|---|--| | 1. Fraction | A mathematical expression representing the division of one integer by another. | $\frac{2}{7}$ is a 'proper' fraction. | | | Fractions are written as two numbers separated by a horizontal line. | $\frac{9}{4}$ is an 'improper' or 'top-heavy' fraction. | | 2. Numerator | The top number of a fraction. | In the fraction $\frac{3}{5}$, 3 is the numerator. | | 3. Denominator | The bottom number of a fraction. | In the fraction $\frac{3}{5}$, 5 is the denominator. | | 4. Unit
Fraction | A fraction where the numerator is one and the denominator is a positive integer. | $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ etc. are examples of unit fractions. | | 5. Reciprocal | The reciprocal of a number is 1 divided by the number . | The reciprocal of 5 is $\frac{1}{5}$ | | | The reciprocal of x is $\frac{1}{x}$ | The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$, because | | | When we multiply a number by its reciprocal we get 1. This is called the 'multiplicative inverse'. | $\frac{2}{3} \times \frac{3}{2} = 1$ | | 6. Mixed
Number | A number formed of both an integer part and a fraction part . | $3\frac{2}{5}$ is an example of a mixed number. | | 7. Simplifying Fractions | Divide the numerator and denominator by the highest common factor. | $\frac{20}{45} = \frac{4}{9}$ | | 8. Equivalent
Fractions | Fractions which represent the same value . | $\frac{2}{5} = \frac{4}{10} = \frac{20}{50} = \frac{60}{150} \ etc.$ | | 9. Comparing Fractions | To compare fractions, they each need to be rewritten so that they have a common | Put in to ascending order: $\frac{3}{4}$, $\frac{2}{3}$, $\frac{5}{6}$, $\frac{1}{2}$. | | | denominator. Ascending means smallest to biggest. | Equivalent: $\frac{9}{12}$, $\frac{8}{12}$, $\frac{10}{12}$, $\frac{6}{12}$ | | | Descending means biggest to smallest. | Correct order: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{6}$ | | 10. Fraction of an Amount | Divide by the bottom , times by the top | Find $\frac{2}{5}$ of £60
$60 \div 5 = 12$
$12 \times 2 = 24$ | | 11. Adding or
Subtracting
Fractions | Find the LCM of the denominators to find a common denominator. Use equivalent fractions to change each fraction to the common denominator . | | Mr A. Coleman Glyn School | | Then just add or subtract the numerators and keep the denominator the same. | $\frac{2}{3} = \frac{10}{15}$ $\frac{4}{5} = \frac{12}{15}$ $\frac{10}{5} + \frac{12}{15} = \frac{22}{15} = 1$ | |---------------------------------|---|--| | 12.
Multiplying
Fractions | Multiply the numerators together and multiply the denominators together. | $\frac{15 \cdot 15}{\frac{3}{8} \times \frac{2}{9} = \frac{6}{72} = \frac{1}{12}}$ | | 13. Dividing Fractions | 'Keep it, Flip it, Change it – KFC' Keep the first fraction the same Flip the second fraction upside down Change the divide to a multiply Multiply by the reciprocal of the second | $\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$ | | | fraction. | | Mr A. Coleman Glyn School