Topic: Histograms and Cumulative Frequency

Topic/Skill	Definition/Tips	Example
1. Histograms	Definition/Tips A visual way to display frequency data using bars. Bars can be unequal in width. Histograms show frequency density on the y-axis, not frequency. Frequency Density = $\frac{Frequency}{Class \ Width}$ Height(cm) Frequency $0 < h \le 10$ 8 $10 < h \le 30$ 6 $30 < h \le 45$ 15 $45 < h \le 70$ 5	Frequency Density (FD) $8 \div 5 = 1.6$ $6 \div 20 = 0.3$ $15 \div 15 = 1$ $5 \div 25 = 0.2$
2. Interpreting Histograms	The area of the bar is proportional to the frequency of that class interval. Frequency = Freq Density × Class Width	A histogram shows information about the heights of a number of plants. 4 plants were less than 5cm tall. Find the number of plants more than 5cm tall.
3. Cumulative Frequency	Cumulative Frequency is a running total . Age Frequency $0 < a \le 10$ 15 $10 < a \le 40$ 35 $40 < a \le 50$ 10	Above 5cm: $1.2 \times 10 + 2.4 \times 15 = 12 + 36 = 48$ Cumulative Frequency 15 $15 + 35 = 50$ $50 + 10 = 60$
4. Cumulative Frequency Diagram	A cumulative frequency diagram is a curve that goes up . It looks a little like a stretched-out S shape . Plot the cumulative frequencies at the endpoint of each interval.	40- 30- CF 20- 10- 0 10 20 30 40 50 Height

Mr A. Coleman Glyn School

5. Quartiles from Cumulative Frequency Diagram	Lower Quartile (Q1): 25% of the data is less than the lower quartile. Median (Q2): 50% of the data is less than the median. Upper Quartile (Q3): 75% of the data is less than the upper quartile. Interquartile Range (IQR): represents the middle 50% of the data.	40- 30 - CF 20 - Value of UQ taken from 33rd = 37 Value of Medidan taken from 22rd = 30 Value of LQ taken from 11th = 18 10 20 30 40 50 Height IQR = 37 - 18 = 19
6. Hypothesis	A statement that might be true, which can be tested.	Hypothesis: 'Large dogs are better at catching tennis balls than small dogs'. We can test this hypothesis by having hundreds of different sized dogs try to catch tennis balls.

Mr A. Coleman Glyn School