Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	Q R 3 3 4 P R' P' Q' P Q'
2. Vector Notation	A vector can be written in 3 ways: \mathbf{a} or \overrightarrow{AB} or $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$	
3. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
4. Vector	A vector is a quantity represented by an arrow with both direction and magnitude . $\overrightarrow{AB} = -\overrightarrow{BA}$	$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
5. Magnitude	Magnitude is defined as the length of a vector.	Magnitude (length) can be calculated using Pythagoras Theorem: 3² + 4² = 25 J25 = 5
6. Equal Vectors	If two vectors have the same magnitude and direction, they are equal.	
7. Parallel Vectors	Parallel vectors are multiples of each other.	2 a + b and 4 a +2 b are parallel as they are multiple of each other.

Mr A. Coleman Glyn School

8. Collinear	Collinear vectors are vectors that are on	
Vectors	the same line . To show that two vectors are collinear ,	
	show that one vector is a multiple of the	▼B
	other (parallel) AND that both vectors	
	share a point.	A
9. Resultant Vector	The resultant vector is the vector that results from adding two or more vectors	if $\underline{\mathbf{a}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and $\underline{\mathbf{b}} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$
Vector	together.	(4) (2) (6)
		then $\underline{\mathbf{a}} + \underline{\mathbf{b}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$
	The resultant can also be shown by lining up the head of one vector with the tail of	
	the other.	ь
		<u>a</u>
		a + b
10.00.1.00		
10. Scalar of a Vector	A scalar is the number we multiply a vector by.	39
Vector	vector by.	
		9
		Example:
		3a + 2b =
		$= 3\binom{2}{1} + 2\binom{4}{-1}$
		$= \binom{6}{3} + \binom{8}{-2}$
		_
		$= \binom{14}{1}$
11. Vector		Example 1: X is the midpoint of AB . Find OX
Geometry		Answer: Draw X on the original diagram
	a	a ^
		\r\ \r\
	0	<i>b</i>
	b	Now build up a journey.
	B	You could use $\overrightarrow{OX} = \overrightarrow{OA} + \frac{1}{2} \overrightarrow{AB}$.
	\rightarrow \rightarrow	This will give: $\overrightarrow{OX} = a + \frac{1}{2}(b-a)$.
	$OA = a AO = -a$ $\rightarrow \qquad \rightarrow$	This will simplify to $\frac{1}{2}a + \frac{1}{2}b$ or $\frac{1}{2}(a+b)$
	OB = b BO = -b	2 2 2 2 2 (4 + 5)
	$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -a + b = b - a$	
	$\overrightarrow{BA} = \overrightarrow{BO} + \overrightarrow{OA} = -b + a = a - b$	