| Topic/Skill | Definition/Tips | Example | |------------------------|---|---| | 1. Translation | Translate means to move a shape. The shape does not change size or orientation. | Q R 3 3 4 P R' P' Q' P Q' | | 2. Vector
Notation | A vector can be written in 3 ways:
\mathbf{a} or \overrightarrow{AB} or $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ | | | 3. Column
Vector | In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-) | $\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down' | | 4. Vector | A vector is a quantity represented by an arrow with both direction and magnitude . $\overrightarrow{AB} = -\overrightarrow{BA}$ | $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ | | 5. Magnitude | Magnitude is defined as the length of a vector. | Magnitude (length) can be calculated using Pythagoras Theorem: 3² + 4² = 25 J25 = 5 | | 6. Equal
Vectors | If two vectors have the same magnitude and direction, they are equal. | | | 7. Parallel
Vectors | Parallel vectors are multiples of each other. | 2 a + b and 4 a +2 b are parallel as they are multiple of each other. | Mr A. Coleman Glyn School | 8. Collinear | Collinear vectors are vectors that are on | | |------------------------|---|--| | Vectors | the same line . To show that two vectors are collinear , | | | | show that one vector is a multiple of the | ▼B | | | other (parallel) AND that both vectors | | | | share a point. | A | | 9. Resultant
Vector | The resultant vector is the vector that results from adding two or more vectors | if $\underline{\mathbf{a}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and $\underline{\mathbf{b}} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ | | Vector | together. | (4) (2) (6) | | | | then $\underline{\mathbf{a}} + \underline{\mathbf{b}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$ | | | The resultant can also be shown by lining up the head of one vector with the tail of | | | | the other. | ь | | | | <u>a</u> | | | | a + b | | 10.00.1.00 | | | | 10. Scalar of a Vector | A scalar is the number we multiply a vector by. | 39 | | Vector | vector by. | | | | | 9 | | | | | | | | Example: | | | | 3a + 2b = | | | | $= 3\binom{2}{1} + 2\binom{4}{-1}$ | | | | $= \binom{6}{3} + \binom{8}{-2}$ | | | | _ | | | | $= \binom{14}{1}$ | | 11. Vector | | Example 1: X is the midpoint of AB . Find OX | | Geometry | | Answer: Draw X on the original diagram | | | a | a ^ | | | | \r\ \r\ | | | 0 | <i>b</i> | | | b | Now build up a journey. | | | B | You could use $\overrightarrow{OX} = \overrightarrow{OA} + \frac{1}{2} \overrightarrow{AB}$. | | | \rightarrow \rightarrow | This will give: $\overrightarrow{OX} = a + \frac{1}{2}(b-a)$. | | | $OA = a AO = -a$ $\rightarrow \qquad \rightarrow$ | This will simplify to $\frac{1}{2}a + \frac{1}{2}b$ or $\frac{1}{2}(a+b)$ | | | OB = b BO = -b | 2 2 2 2 2 (4 + 5) | | | $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -a + b = b - a$ | | | | $\overrightarrow{BA} = \overrightarrow{BO} + \overrightarrow{OA} = -b + a = a - b$ | | | | | |